Study on the Stimulation Effectiveness Evaluation of Large-Scale Hydraulic Fracturing Simulation Experiment Based on Optical Scanning Technology

Author:

Yang Hanzhi1,Guo Yintong2ORCID,Wang Lei3,Bi Zhenhui1,Guo Wuhao3,Zhao Guokai1,Yang Chunhe4

Affiliation:

1. State Key Laboratory for Coal Mine Disaster Dynamics and Control, Chongqing University

2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan (Corresponding author)

3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan

4. State Key Laboratory for Coal Mine Disaster Dynamics and Control, Chongqing University and State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan

Abstract

Summary Unconventional reservoirs such as gas shales and tight gas sands require technology-based solutions for optimum development because of the undeveloped matrix pores and poor permeability. Hydraulic fracturing is one of the most critical technologies. The quantitative characterization of hydraulic fractures is of great significance to the stimulation evaluation of the reservoir, but there is still a lack of fine, effective and systematic evaluation methods. 3D optical scanning technology is widely used in the quantitative characterization of rock fracture morphology for its advantages of high speed, convenience, high precision, and nondestructive testing. In this study, after the indoor hydraulic-fracturing simulation experiments, 3D optical scanning was used to visualize the fracture network. On this basis, two aspects of quantitative evaluation methods for stimulation effectiveness were established, including: (1) evaluating the local conductivity (permeability) of different fractures by cutting hydraulic-fracturing samples. Then combining local conductivity of different fractures with the overall stimulated reservoir area, which could be more reasonable to evaluate the stimulation scope of the reservoir; (2) calculating the fractal dimension (FD) of the 3D spatial structure based on the point-cloud processing, which could directly reflect the complexity of the fracture network. Finally, a new evaluation index for stimulation (Es) was established to comprehensively assess the stimulation effectiveness of the reservoir, which was applied and verified through the indoor fracturing simulation experiments of tight sandstone from the Ordos Basin, China.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3