A Novel Emulsified Acid for Deep Wells Stimulation: Rheology, Stability, and Coreflood Study

Author:

Ahmed Musa1,Sultan Abdullah1,Qiu Xiangdong2,Sidaoui Ziad2,Ali Al-Amri Ahmad1

Affiliation:

1. King Fahd University of Petroleum and Minerals

2. Schlumberger

Abstract

Abstract The main objective of matrix acidizing is to create deep channels(wormholes) that bypass the damaged zone around the wellbore, which eventually, will increase the productivity or injectivity of the well. HCl-diesel emulsified acid is used to achieve that goal as well as other objectives such as prevention of tubing corrosion. The cost of HCl-emulsified acid could be lower by reducing the cost of either the surfactant (emulsifier) or the continuous phase (diesel). Hence, in this study, a low-cost, more efficient emulsified acid is proposed, with cheaper solid stabilizer (nanoparticle) instead of surfactant, and less expensive continuous phase; waste oil instead of diesel. Rheology, stability and coreflooding experiments were performed at high-pressure high-temperature (HPHT) of a typical reservoir conditions in the Middle East. This study addresses the feasibility of a novel waste oil emulsified acid system in acid stimulation treatment. In particular, rheology and stability of the emulsion and reactivity with limestone reservoir rock at HPHT were investigated. The reactivity was carried out through a series of core flow experiments at HPHT and compared with the conventional diesel emulsified acid. Stability experiments were conducted at 375 °F. Coreflood experiments were conducted using Indiana limestone 12″ cores and 1.5 in diameter. The initial permeability of the cores was in the range of 2-4 md. The pressure and temperature were 3000 psi and 275 °F, respectively. Four injection rates were used 0.5, 2, 5, and 10 ml/min. For better comprehension for resulted wormhole characteristic from both stimulation fluids under investigation, the CT-scan image for the Indiana limestone cores after injection of both waste oil and diesel emulsified acids were performed and analyzed through a high resolution imaging and visualization software. From the laboratory results, the novel waste oil emulsified acid system showed a good potential as a stimulation fluid. For instance, it achieved lower pore volume of acid to break through (PVBT) compared to both conventional diesel emulsified acid and plain HCl. Moreover, diesel emulsion presented a better performance at lower injection rates whereas waste oil emulsion performed superiorly at higher rates. Thisindicates that, diesel emulsion is still better in terms of stimulation efficiency, however, waste oil emulsified acid still could be recommended in acid stimulation since it has low cost and acceptable performance. Furthermore, CT scan analysis shows that waste oil emulsified acid was capable of achieving narrow, branch-free, and deep wormhole which are the desired characteristic for any potential stimulation fluid. The novelty of this work comes from the fact that waste oil emulsified acid performance for carbonate acid stimulation has not been addressed before and hence this work to fill in the gap.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3