Development and Application of a Wellbore/Reservoir Simulator for Testing Oil Wells

Author:

Hasan A. R.1,Kabir C. S.2,Wang Xiaowei1

Affiliation:

1. U. of North Dakota

2. Chevron Overseas Petroleum Technology Co.

Abstract

Summary A comprehensive coupled wellbore/reservoir simulator was developed to study the behavior of single-phase oil flow in the wellbore. The wellbore is modeled numerically where mass, momentum, and energy of the fluid are conserved, while the reservoir fluid flow is treated analytically. Energy transport occurs through tubulars, cement sheaths, and the formation by conduction. However, both conductive and convective heat-transport mechanisms are operative for the annular fluid. Heat losses through seawater and air are also modeled for a well producing in an offshore environment. A sensitivity study shows that heat loss through seawater becomes significant for long submerged tubulars (> 2,000 ft), but is marginal for shorter pipes because of the fluid's short residence time. Further, a deviated well loses more heat to formation than its vertical counterpart for the same reason. Of the major variables, thermal conductivity of the annular fluid plays a key role in heat retention and, therefore, the wellhead temperature (WHT). We have identified the phenomenon of thermal storage. This storage behavior is associated with heat absorption or desorption by cement sheaths and tubulars and is reflected as the time taken to attain equilibrium WHT for a given flow rate. A longer storage period occurs at low flow rates because of lower associated fluid enthalpy. Field data were used to demonstrate various applications of the simulator. We showed that both drawdown and buildup data of bottomhole pressure (BHP), wellhead pressure (WHP), and WHT can be modeled successfully given the tubular, completion, and reservoir data. Conversely, given the wellhead measurements (WHP and WHT), BHP values comparable to those measured can be computed.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3