Dynamic Diverter Technology Efficiency in Acid Fracturing Applications

Author:

Sahu Qasim A.1,Arias Rommel E.1,Alali Eyad A.1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Acid fracturing has been an integral part of reservoir development strategies for carbonate reservoirs as mechanical and chemical means of bypassing formation damage enhances productivity. Over the past few years, acid fracturing has significantly increased targeting more carbonate reservoirs. There is a need to fully address the heterogeneous petrophysical and geomechanical properties of target reservoirs, which adversely affects the stimulation efficiency and production if fluids are not properly designed. When injecting stimulation fluids to fracture the reservoir rock, the fluid is prone to traveling along the path of least resistance, and consequently less permeable zones and high stress reservoir rock receive treatments that could be further improved or enhanced. Accordingly, this drives the industry to continuously develop high performance chemical dynamic diverter systems. To ensure an effective and sufficient acid fracturing is achieved when treating long intervals of perforated clusters or openhole horizontal wells. Recent advancements in diversion technology utilize various forms of degradable particles, where they serve to provide a temporary bridge, which is either inside the existing fracture or the perforation entrance. This allows for intentionally forming a low permeability pack, allowing the pressure inside the fracture to increase and redirect the next stage of fluid to the zone having a higher degree of stress that has not yet been covered by the fracture. The objective is to increase the fracture complexity, particularly in vertical wells where there is big variation in geomechanical properties of the formation. To gain a deeper understanding of the performance of these diverters, a simulation study was conducted to analyze and compare the efficiency of particulate diverters used in two pilot wells. Fracture modelling and sensitivity analysis were also performed to understand the effect of diverters on the fracture geometry. To match the actual treatments, modelling validation and control were achieved through utilization of field data such as production logging, temperature surveys and pressure buildup tests. The study determined that the success of the particulate diverter employed for the fracturing application is heavily dependent and governed by the geomechanical properties of the treated zone and the ability of the diverter to overcome the stress difference in the stimulated interval. Optimization of the diverter design and degradation profile is still needed to improve and achieve the best stimulation efficiency.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3