LWD NMR for Hydrocarbon Typing and Formation Evaluation in a Challenging Offshore Trajectory

Author:

Mutalib K. H.1,Han M..2,Khoo C. Y.2,Lee S. S.2,Lwin M. M.2,Wong F. K.2

Affiliation:

1. Sarawak Shell Bhd.

2. Schlumberger

Abstract

Abstract The well within the context of this case study consists of reservoirs are sequences of permeable sands interbedded with variable proportions of silt and clay. Gas is the target hydrocarbon type, but light oil / condensate can be present unexpectedly. In these depleted reservoirs, hydrocarbons typing are complicated by their reduced volumes and corresponding diminished effect on conventional logs. Wells are highly deviated and targets don't align in the same direction leading to high trajectories tortuosity. This prevents to plan extensive wireline logging program. Formation evaluation is mainly based on LWD logs. For such challenging condition, fluids identification is traditionally made possible by stationary Nuclear Magnetic Resonance (NMR) from wireline conveyed logging devices, adopting Diffusion— Relaxation maps technique. Through Diffusion—Relaxation maps technique, the contrast on both diffusivity and relaxation time (longitudinal relaxation time T1 or transversal relaxation time T2) allow differentiation of gas, oil and water. Even though high gas diffusivity creates contrast on transversal relaxation time T2 to differ gas from the other fluids, the approach based on T2 domain only is long time neglected. This is because under wireline condition, formation gas is often flushed by mud filtrate and the formation oil can be mixed up with OBM signal. This study proves that LWD NMR, due to its logging while drilling features, enables the simple T2 spectra based method to differ formation fluids in an efficient way. Attentive BHA design and job planning ensure good data quality and reasonably fast logging speed. Because of short time after bit (TAB) while drilling, it probes directly the formation fluids without being affected by mud invasion. For the studied reservoirs, the measured T2 value for water, gas and light oil are well distinguished being approximately of 200 milliseconds, 450 milliseconds and 2000 milliseconds respectively. The intervals with the presence of light oil are revealed directly from T2 spectra and the gas-oil-contacts (GOC) are accurately determined by T2 distribution. The same result is hard to be achieved by triple-combo measurements only. A newly introduced statistical technique "factor analysis" is used to determine poro—fluid distributions and associated porosities. It automatically searches for the dominant T2 modes through T2 depth log and identify repeated T2 distribution patterns to provide a continuous fluid facies analysis. Density Magnetic Resonance Porosity (DMRP) method is used to estimate the total porosity and gas saturation. It provides a resistivity independent method to address the gas saturation. Considering the fresh formation water, the uncertainty on the petro—physical parameters is significantly reduced. This paper divulges the value of T2 based fluid typing method with LWD NMR tool. It provides a simple but efficient way to identify gas from light oil. The fluid information offered is essential for field completion decision making.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3