In-Situ Generation of CO2 to Eliminate the Problem of Gravity Override in EOR of Carbonate Reservoirs

Author:

Abdelgawad K.Z.. Z.1,Mahmoud M.A.. A.1

Affiliation:

1. *Also Adjunct Faculty Member with Suez University

Abstract

Abstract Carbon dioxide (CO2) injection into hydrocarbon reservoir is reported by many researchers to be one of the best enhanced oil recovery techniques. CO2 for enhanced oil recovery has favorable characteristics such as miscibility between CO2 and oil under most reservoir conditions, intermediate component extraction and heavy oil viscosity reduction which is named CO2 flooding process. As a result of viscous fingering and gravity override, sweep efficiency decreases and significant amounts of oil are left behind during CO2 flooding. Foaming was used to increase the injected CO2 viscosity but a lot of problems were encountered with the foaming agents such as stability and thermal stability, etc. In this paper we will introduce a new method of generating CO2 in-situ in carbonate reservoirs during enhanced oil recovery processes. The generation process includes the injection of low pH HEDTA or EDTA chelating agents followed by sea water, high pH chelating agents, or low salinity water. First the low pH chelating agent will react with the carbonate rock and produce CO2 that will diffuse to the oil and increases the oil mobility and in turn more oil will be produced. The chelating agents used are H2Na2EDTA (pH = 4.5), H3HEDTA (pH = 2.5), and H2NaHEDTA (pH = 4). The acid part which contains the hydrogen ions will attack the carbonate rock and produce CO2 that will increase the oil recovery, and then the high pH chelating agent or even sea water can be used to displace the low pH chelating agent and CO2. The experimental results showed that about 90% of the oil in place was recovered from the carbonate cores without using of surfactants or any other additives. The new method will eliminate the problem of gravity override which is the main problem of CO2 EOR. The chelating agent can be placed in the whole reservoir by introducing a low reactive form of these chemicals or by encapsulating these chemicals to start reacting with the reservoir after the placement is complete. The reaction of the encapsulated chemicals can be triggered by temperature or any other triggering mechanism.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3