Improved Rod-Pump Run Time in Sandy Wells Two Stages Filtration

Author:

VanNatta John1,Logan Phillip1,Stieg Alyssa1,Gonzalez Gustavo2,Guanacas Luis2

Affiliation:

1. Apache Corp.

2. Odessa Separator Inc.

Abstract

Abstract Failures due to solid particles flowing with the production fluid is one of the main causes of interventions in wells with beam pumping systems. When this problem is accompanied with chemical deposition like scale, leads to a very common intervention during well operation. This paper proposes an analytical methodology that consists of evaluation of the particle size distribution, viability for the use of sand screens and centrifugal separation systems for sand control management in wells with short run time. These systems have proven effective for failure wells that requires a sand control management system when if not addressed increase the lifting costs leading many projects to be infeasible from an economic standpoint. All the technical considerations are explained focusing on the information required and the parameters analyzed to recommend the most accurate design for sand control; selected approaches and models that have been developed to improve the run time due to sand issues are shown in this paper. A case study is showed in a well with average run time of 27 days indicating that identification of particle size distribution was a key factor to provide the right solution for sand control management. These novel applications help operators to reduced OPEX (operating expense), by minimizing well Interventions, decreasing failures in the pump; stabilizing the production and reducing the unforeseen interruption.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3