Acid Diversion in Carbonates with Nanoparticles-Based in Situ Gelled Acid

Author:

Abdelfatah Elsayed1,Bang Sangho1,Pournik Maysam2,Shiau Bor Jier1,Harwell Jeffrey1,Haroun Mohammed3,Rahman Motiur3

Affiliation:

1. University of Oklahoma

2. University of Texas at Rio Grande Valley

3. The Petroleum Institute in Abu Dhabi

Abstract

Abstract Acid stimulation is used in carbonate reservoirs to bypass formation damage. Carbonate reservoirs are highly heterogeneous with layers of large permeability variation. For even distribution of acid between layers, we have developed a new acid diversion system using nanoparticles. Nanoparticles aggregate size distribution evolves with time, and once it spans pore space, gel structure is formed. The objective of this present a new acid diversion system with nanoparticles based acid system along with model that can predict the gelation kinetics. Experimental inversitgation has been conducted to study the gelation kinetics of nanoparticles at different salts, ionic strength, pH, and temperature. Phase behavior study was first conducted. The best system was then tested in parallel coreflood. Then Population Balance equation (PBE) is used to model the growth of aggregates and the interaction between aggregates and porous media. Quadrature method of moments (QMOM) is used to convert the PBE with continuous distribution of nanoparticle size into moment transport equations for efficient computation. Finite volume method is used for discretization of moment transport equation, acid transport equation, continuity equation and Darcy law. Acid diversion in carbonates using nanoparticle-based in situ gelled acid is proven to be more efficient than convectional diversion systems especially for harsh reservoir conditions. The effect of different salts, ionic strength, pH and temperature was studied experimentally. Coreflooding shows that Nanoparticle-based system can create several complete wormholes in both low and high permeability cores. Nanoparticles plugging small pore throats can divert acid into larger pores and reduce acid leakoff. Model presented in this paper gives insight into the aggregation and gelation kinetics. Model displayed the influence of nanoparticle concentration on gelation time. Once the gel forms, shear thinning behavior is used to model the viscosity of the gel. Shear rate could highly reduce the viscosity of the gel and hence affect the efficiency of acid diversion. The model developed in this work accurately simulate aggregation, initiation of gelation of fumed silica and acid diversion in carbonates. The new acid diversion system is highly effective in even distribution of acid between layers of different permeability. The model developed in this study can help in optimization of new nanoparticles-based acid diversion system.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3