Improved Calculation of Wellblock Pressures for Numerical Simulation of Non-Newtonian Polymer Injection

Author:

Tai Irfan1,Giddins Marie Ann1,Muggeridge Ann1

Affiliation:

1. Imperial College London

Abstract

Summary The viability of any enhanced-oil-recovery project depends on the ability to inject the displacing fluid at an economic rate. This is typically evaluated using finite-volume numerical simulation. These simulators calculate injectivity using the Peaceman method (Peaceman 1978), which assumes that flow is Newtonian. Most polymer solutions exhibit some degree of non-Newtonian behavior resulting in a changing polymer viscosity with distance from the injection well. For shear-thinning polymer solutions, conventional simulations can overpredict injection-well bottomhole pressure (BHP) by several hundred psi, unless a computationally costly local grid refinement is used in the near-wellbore region. We show theoretically and numerically that the Peaceman pressure-equivalent radius, based on Darcy flow, is not correct when fluids are shear thinning, and derive an analytical expression for calculating the correct radius. The expression does not depend on any particular functional relationship between polymer-solution viscosity and velocity. We test it using the relationship described by the Meter equation (Meter and Bird 1964) and the Cannella et al. (1988) correlation. Numerical tests indicate that the solution provides a significant improvement in the accuracy of BHP calculations for conventional numerical simulation, reducing or removing the need for expensive local grid refinement around the well when simulating the injection of fluids with shear-thinning non-Newtonian rheology.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3