Nanoparticle-Based Drilling Fluids for Minimizing Formation Damage in HP/HT Applications

Author:

Mahmoud Omar1,Nasr-El-Din Hisham A.1,Vryzas Zisis1,Kelessidis Vassilios C.1

Affiliation:

1. Texas A&M University

Abstract

Abstract Drilling fluid must fulfill various functions with a great impact on the drilling performance. Drilling fluid invasion can cause formation damage. Good quality mudcakes can prevent such damage. This research focuses on the lab techniques and performance results of testing innovative water-based drilling fluids containing nanoparticles (NPs) for minimizing formation damage at high-pressure/high-temperature (HP/HT) conditions. A couette type viscometer was used to examine the rheological properties of the drilling fluids tested in this research. Zeta potential measurements were conducted at different temperatures and concentrations to assess their stability and to investigate the role of charge potential. Indiana limestone outcrops were examined as the filter media for both static and dynamic filtration (up to 350°F and 500 psi) using a HP/HT dynamic filter press. The mudcakes were investigated using a computed-tomography (CT) scan, and Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS). Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) was used to measure the concentrations of key ions in the filtrate fluids. A significant reduction in the filtrate fluid volume was achieved when using ferric oxide NPs (-43% for 0.5 wt%) compared to that of the base fluid. However, adding silica NPs led to an increase in the filtrate volume and mudcake thickness. Increasing the NP concentration resulted in an increase in the fluid loss and mudcake thickness. The mudcakes consisted of two layers, as indicated by the CT scan analysis. 0.5 wt% was found to be the optimal NP concentration, which provides less agglomeration and a reduction in the mudcake permeability by −76.4%. At this concentration, the ICP-OES analysis showed a higher cation dissociation, which promoted the formation of a different clay platelet microstructure. At a higher NP concentration, a new layer of NPs was formed in the mudcake, which adversely affects the mudcake characteristics, as demonstrated by CT scan analysis and SEM-EDS elemental mapping. The rheological measurements indicated a good rheology at different temperatures and NP concentrations. Moreover, the NPs helped to stabilize the viscosity and yield stress at high temperatures (up to 200°F). Aging at 350°F for 16 hours showed that NP-based drilling fluids remain stable with minor changes in rheological properties. The obtained rheological data for various NPs is fitted to the classical drilling fluid rheological models to determine the best fit-model, which can then be applied to an efficient design. This research provides a comprehensive evaluation of improved water-based drilling fluids, using ferric oxide and silica NPs for HP/HT applications. The examined NPs have the potential to enhance drilling fluid properties, which provides more efficient drilling operations and less formation damage.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3