Implementation of an Integrated Geochemical Approach Using Polar and Nonpolar Components of Crude Oil for Reservoir-Continuity Assessment: Verification with Reservoir-Engineering Evidences

Author:

Asemani Morteza1,Rabbani Ahmad Reza1,Sarafdokht Hashem1

Affiliation:

1. AmirKabir University of Technology

Abstract

Summary The ability of geochemistry techniques in reservoir-continuity studies has already been proved. Most of the traditional methods mainly involve analyzing nonpolar components of crude oil and overlooking polar components. Despite valuable information obtained from nonpolar components, these compounds are sometimes affected by various alterations or likely provide only a piece of the reservoir-compartmentalization puzzle. In this paper, an integrated geochemical approach that uses nonpolar (i.e., saturates and aromatics) and polar (i.e., asphaltenes) components of crude oil was performed to evaluate reservoir continuity efficiently. The Shadegan Oil Field in the Dezful Embayment in southwest Iran was investigated for reservoir-continuity studies to show the efficiency of this proposed technique. The selected interparaffin peak ratios and light hydrocarbons [the C7 oil correlation star diagram (C7CSD)] from whole-oil gas chromatography (GC) (WOGC) chromatograms were used to obtain oil fingerprints from the nonpolar fraction of crude oils. The Fourier-transform infrared (FTIR) spectroscopy of asphaltenes was applied to obtain oil fingerprints from the polar fraction of crude oils. The pairwise comparison of studied wells by each technique was summarized in a similarity matrix with green, yellow, and red colors to show connectivity, limited connectivity, and disconnectivity according to oil fingerprints. Finally, a compartmentalization model was prepared from the integrated results of different techniques considering the worst-case scenarios regarding the occurrence or absence of reservoir continuity when relying on individual methods for the studied field. Results show that the Shadegan Oil Field comprises three zones in the Asmari Reservoir and two zones in the Bangestan Reservoir. Reservoir-engineering data, including pressure data and pressure/volume/temperature (PVT), completely corroborated the obtained results from the geochemical approach. The consistency of results suggested FTIR oil fingerprinting of asphaltene as a novel and straightforward technique, which is a complementary or even alternative method with respect to previous geochemical methods.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3