A Meshless Numerical Modeling Method for Fractured Reservoirs Based on Extended Finite Volume Method

Author:

Rao Xiang1,Zhao Hui2,Liu Yina2

Affiliation:

1. School of Petroleum Engineering and Cooperative Innovation Center of Unconventional Oil and Gas (Ministry of Education & Hubei Province), Yangtze University and Key Laboratory of Drilling and Production Engineering for Oil and Gas, Hubei Province, Wuhan, China (Corresponding author)

2. School of Petroleum Engineering, Yangtze University

Abstract

Summary In this paper, a meshless numerical modeling method named mesh-free discrete fracture model (MFDFM) of fractured reservoirs based on the newly developed extended finite volume method (EFVM) is proposed. First, matching and nonmatching point cloud generation algorithms are developed to discretize the reservoir domain with fracture networks, which avoid the gridding challenges of the reservoir domain in traditional mesh-based methods. Then, taking oil/water two-phase flow in fractured reservoirs as an example, MFDFM derives the EFVM discrete scheme of the governing equations, constructs various types of connections between matrix nodes and fracture nodes, and calculates the corresponding transmissibilities. Finally, the EFVM discrete scheme of the governing equations and the generalized finite difference discrete scheme of various boundary conditions form the global nonlinear equations, which do not increase the degree of nonlinearity compared with those in the traditional finite volume method (FVM)-based numerical simulator. The global equations can be solved by the existing nonlinear solver in the FVM-based reservoir numerical simulator by only adding the linear discrete equations of boundary conditions, which reduce the difficulty of forming a general purpose MFDFM-based fractured reservoir numerical simulator. Several numerical test cases are implemented to illustrate that the proposed MFDFM can achieve good computational performance under matching and nonmatching point clouds, and for heterogeneous reservoirs, complex fracture networks, complex boundary geometry, and complex boundary conditions, by comparing the computational results of MFDFM with embedded discrete fracture model (EDFM). Thus, MFDFM retains the computational performances of the traditional mesh-based methods and can avoid the difficulties of handling complex geometry and complex boundary conditions of the computational domain, which is the first meshless numerical framework to model fractured reservoirs in parallel with the mesh-based discrete fracture model (DFM) and EDFM.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3