Drill and Learn: A Decision-Making Work Flow To Quantify Value of Learning

Author:

Hanea R. G.1,Casanova P..2,Hustoft L..2,Bratvold R. B.3,Nair R..4,Hewson C..4,Leeuwenburgh O..5,Fonseca R.-M.. -M.4

Affiliation:

1. Equinor and University of Stavanger

2. Equinor

3. University of Stavanger

4. TNO

5. TNO and Delft University of Technology

Abstract

Summary The goal of reservoir management is to make decisions with the objective of maximizing the value creation from oil or gas production. To achieve this, models that preserve geological realism and have predictive capabilities are being developed and used. These models are commonly calibrated using assisted-history-matching (AHM) methods which, in general, will lead to reduced uncertainty in the predicted production. Although uncertainty assessment and reduction are often elements of high-quality decision making, they are not value-creating. Value can only be created through decisions, and any decision changes resulting from AHM should be modeled explicitly. Recently, there has been a surge in the application and understanding of value-of-information (VOI) work flows for reservoir management. In this text, we present a comparison of existing work flows and note the differences between them. After this, we introduce a practically driven approach, referred to as “drill and learn,” with elements and concepts from existing work flows to quantify the value of learning (VOL). VOL can be used as a metric to quantify the potential of such work flows and the strategies obtained. Ensemble methods [ensemble smoother with multiple data assimilation (ES-MDA) and stochastic simplex approximate gradient (StoSAG)] are used for the history matching and optimization. The results presented are obtained by applying the proposed drill-and-learn work flow on a realistic synthetic case. Sensitivities to the amount of information obtained before a closed-loop exercise is performed are also investigated. We show the benefit of performing the closed-loop approach to quantify the VOL to modify field-development decisions, which leads to a mature and robust decision-making framework.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3