Dynamic Mesh Adaptivity and Novel Stopping Criterion Guided by a Posteriori Error Estimates for Coupled Geomechanics Using Mixed Finite Element Method for Flow

Author:

Wheeler Mary1,Girault Vivette2,Li Hanyu1

Affiliation:

1. The University of Texas at Austin

2. Sorbonne Université

Abstract

AbstractFlow coupled with geomechanics problems has gathered increased research interest due to its resemblance to engineering applications, such as unconventional reservoir development, by incorporating multiple physics. Computations for the system of such a multiphysics model is often costly. In this paper, we introduce a posteriori error estimators to guide dynamic mesh adaptivity and to determine a novel stopping criterion for the fixed-stress split algorithm to improve computational efficiency.Previous studies for flow coupled with geomechanics have shown that local mass conservation for the flow equation is critical to the solution accuracy of multiphase flow and reactive transport models, making mixed finite element method an attractive option. Such a discretization maintains local mass conservation by enforcing the constitutive equation in strong form and can be readily incorporated into existing finite volume schemes, that are standard in the reservoir simulation community. Here, we introduced a posteriori error estimators derived for the coupled system with the flow and mechanics solved by mixed method and continuous Galerkin respectively. The estimators are utilized to guide the dynamic mesh adaptivity. We demonstrate the effectiveness of the estimators on computational improvement by a fractured reservoir example. The adaptive method only requires 20% of the degrees of freedom as compared to fine scale simulation to obtain an accurate solution.To avoid solving enormous linear systems from the monolithic approach, a fixed-stress split algorithm is often adopted where the flow equation is resolved first assuming a constant total mean stress, followed by the mechanics equation. The implementation of such a decoupled scheme often involves fine tuning the convergence criterion that is case sensitive. Previous work regarding error estimators with the flow equation solved by Enriched Galerkin proposed a novel stopping criterion that balances the algorithmic error with the discretization error. The new stopping criterion does not require fine tuning and avoids over iteration. In this paper, we extend such a criterion to the flow solved by mixed method and further confirm its validity.

Publisher

SPE

Reference7 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3