Optimization of Fuel Consumption in Compressor Stations

Author:

Elshiekh T. M.1

Affiliation:

1. Egyptian Petroleum Research Institute

Abstract

Natural gas passing through pipelines is transported by means of compressor stations that are installed in pipeline-network systems. These stations are usually installed at intervals greater than 60 miles to overcome pressure loss, and typically, they consume approximately 3 to 5% of the transported gas, making the problem of how to optimally operate the compressors driving the gas in a pipeline network important. The objective function of the optimization model is a nonlinear mathematical relationship. The model has been studied to minimize the fuel consumption in the compressor stations and to obtain suitable decision-making variables. Genetic algorithms are used as the optimization methodology, and the software program Lingo (Thompson 2011) is used to compare the optimization results. Two cases of centrifugal compressor stations with different performances are studied. The optimization model aims to improve the fuel consumption of the compressor stations in the pipeline network according to the conditions of the transmissions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy recovery and hydrogen production potential assessment in a natural gas pressure reduction station;Process Safety and Environmental Protection;2024-09

2. Compressor/pump stations in natural gas transmission pipelines;Advances in Natural Gas: Formation, Processing, and Applications. Volume 6: Natural Gas Transportation and Storage;2024

3. Gas Turbine Compressor Configuration Analysis for Production and Efficiency Optimization at PT Saka Indonesia Pangkah Ltd.;IOP Conference Series: Earth and Environmental Science;2021-12-01

4. Recent trends in gas pipeline optimization;Materials Today: Proceedings;2021-11

5. Optimization analysis for hydro pumped storage and natural gas accumulation technologies in the Argentine Energy System;Journal of Energy Storage;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3