Real-Time Estimation and Management of Hydrate Plugging Risk During Deepwater Gas Well Testing

Author:

Zhang Jianbo1,Wang Zhiyuan1,Duan Wenguang1,Fu Weiqi1,Sun Baojiang1,Sun JinSheng1,Tong Shikun1

Affiliation:

1. China University of Petroleum (East China)

Abstract

Summary Hydrate formation and deposition are usually encountered during deepwater gas well testing, and if hydrates are not detected and managed in time, a plugging accident can easily occur. In this study, we demonstrate a method for estimating and managing the risk of hydrate plugging in real time during the testing process. The method includes the following steps: predicting the hydrate stability region, calculating the hydrate formation and deposition behaviors, analyzing the effect of the hydrate behaviors on variations in wellhead pressure, monitoring the variations in wellhead pressure and estimating the hydrate plugging risk in real time, and managing the risk in real time. An improved pressure-drop calculation model is established to calculate the pressure drop in annular flows with hydrate behaviors, and it considers the dynamic effect of hydrate behavior on fluid flow and surface roughness. The pressure drops calculated at different times agree well with experimental and field data. A case study is conducted to investigate the applicability of the proposed method, and results show that with the continued formation and deposition of hydrates, both the effective inner diameter of the tubing and the wellhead pressure decrease accordingly. When the wellhead pressure decreases to a critical safety value under a given gas production rate, a hydrate inhibitor must be injected into the tubing to reduce the severity of hydrate plugging. It is also necessary to conduct real-time monitoring of variations in wellhead pressure to guarantee that the risk of hydrate plugging is within a safe range. This method enables the real-time estimation and management of hydrate plugging during the testing process, and it can provide a basis for the safe and efficient testing of deepwater gas wells.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3