Real-Time Monitoring and Predictive Failure Identification for Electrical Submersible Pumps

Author:

Bhardwaj Abhijeet Sandeep1,Saraf Rahul1,Nair Geetha Gopakumar1,Vallabhaneni Sridharan1

Affiliation:

1. Halliburton

Abstract

Abstract The maintenance of electrical submersible pumps (ESPs) is a highly capital-, resource-, and manpower-intensive exercise that is traditionally performed by reactive process monitoring of multivariate sensor data. In the reactive paradigm, it is difficult to proactively distinguish between sensor fluctuations, trip events, and failures in real time. This paper presents a real-time alarming system for predictive ESP failure identification by constructing dynamic operating envelopes on real-time sensor indicators using machine learning (ML). This ML model identifies the complex relationships between pressure head, pump losses, and supplied electrical energy. Operating envelopes are dynamically updated and validated by continuously incoming sensor data to provide indicators of ESP trip events. Recommendations for the amount of data required to provide reliable predictions and an alarming system to classify an ESP trip as a failure are also incorporated in the model. The algorithm can identify longer-term trends and deeper functional relationships from historical data, as compared to the traditional engineering approaches used for ESP diagnoses. The new workflow with the predictive model can provide signals two weeks before the actual failure event, as indicated by the traditional workflow. Issues related to sensor data quality, including missing, misaligned, and erroneous data that may result in false positive notifications can be easily improved by incorporating more domain knowledge by subject matter experts and field engineers. The proactive identification of failure events using this real-time alarming system can improve production efficiencies by avoiding deferment losses. It also contributes indirectly by improving, reducing, and automating the time spent in analyzing failure events, such as dismantle, inspection, and failure analysis (DIFA). The alarming algorithm can be gradually incorporated into traditional systems to provide continuous improvements and to add value without incurring the high costs of initial deployment and change management associated with it. This paper presents predictive ML models deployed to analyze real-time sensor data to proactively predict failures in ESPs results. It also provides recommendations related to the use of these workflows to improve operating practices and production efficiencies and to reduce deferment. Similar approaches can be extended to the monitoring of other equipment in real time.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3