Prediction of Scale Problems Due to Injection of Incompatible Waters

Author:

Vetter O.J.1,Kandarpa V.1,Harouaka A.1

Affiliation:

1. Vetter Research

Abstract

Summary A newly developed model to predict chemical compatibilities in waterflood operations is described. The model calculates the coprecipitation of BaSO4, SrSO4, and CaSO4 at various locations in field operations as mixtures of injection and reservoir waters flow through injection wells, reservoir, and production wells into surface facilities. As its data base, the model uses comprehensive data of actually measured solubilities in fairly complex oilfield and geothermal brines at various temperatures and at saturation or atmospheric pressure. The solubilities at high pressures are calculated using thermodynamic parameters. The application of the model is illustrated by examples involving two reservoir and two injection waters. Introduction Two of the more difficult problems in designing a proper waterflood operation are (1) the predetermination of chemical incompatibilities of waters used in the flood and (2) the forecast of these incompatibility effects on future field operations. This forecast should cover the type, extent, and location of all future damages resulting from chemical incompatibility problems.No damage of any kind would occur if all reservoir materials were chemically compatible with the injected water. However, hardly any source water available in large enough quantities is fully compatible with all materials in the reservoir to be flooded.The water native to the reservoir to be flooded is in chemical equilibrium with the rock, hydrocarbons, and any other materials present in the reservoir (e.g., CO2, N2, H2S, etc). In contrast, the water considered for injection is in equilibrium with its own environment, which is normally quite different from that in the reservoir to be flooded. Any injection automatically leads to a readjustment of most chemical parameters as soon as the injection water enters the reservoir. The newly injected water must re-establish its own and new thermodynamic equilibrium with respect to all solids and fluids present in the reservoir to be flooded.In conventional reservoir engineering and waterflood design, the fluids and rock phases are considered chemically inert. That is, these liquid, gaseous, and solid phases have physical properties that can have large effects on the flow properties but are not considered to participate actively in any chemical reaction. In reality, this is not true. Any injected water having an origin different from the reservoir to be flooded will interact chemically with the fluids and solids in the flooded reservoir. These interactions, of course, will depend on the chemical compositions of all participants in these interactions (liquid, gaseous, and solid phases), the degree of mixing, the flow paths, and the temperatures and pressures at various locations within the flooded reservoir.To complicate the situation further, the reservoir water (i.e., the produced water) may be produced at thermodynamic conditions again different from those within the reservoir. For example, dissolved CO2 and H2S may break out of solution when the water is produced together with the hydrocarbons. This loss of reactive gases will change the composition and pH of the water, thus generating a possible compatibility problem when the produced water is reinjected. This means compatibility problems can occur, at least theoretically, even during reinjection of produced formation water originating in the reservoir to be flooded.Ignoring the chemical reactions between injected waters and reservoir materials can lead to the disasters often experienced in the field. The formation of scale in producing wells is the most obvious result of the frequently encountered compatibility problems. In this paper, we describe some preflood considerations necessary for proper flood design. JPT P. 273^

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3