A Holistic Approach to Data Interpretation Combines the Strengths of Ultra-Deep Electromagnetic Tools with Shallow Logging While Drilling Data to Improve Reservoir Understanding

Author:

Riofrío K.1,Clegg N.1,Rawsthorne L.2,Kolstø S.2,Mouatt J.2,Bang A.2,Chatterjee A.2

Affiliation:

1. Halliburton

2. Aker BP

Abstract

Abstract Understanding the geological setting and architecture in which a well is drilled is key to achieving optimal well placement, enhancing reservoir production and for future reservoir exploitation with the planning of additional wells. The planning of production wells is accomplished using different data sets with different resolutions, but understanding the subsurface geology is key to linking the data sources. During drilling operations LWD tools, which have greater resolution than seismic, are deployed to aid in decision making and optimise well placement. Focusing on the data sources in isolation can lead to successful wells, but placing this data in a geological context allows for more sophisticated decision making and leads to greater reservoir understanding for improved reservoir exploitation. Key to linking the near wellbore measurements with the geological models derived from seismic interpretation are ultra-deep electromagnetic (EM) tools. Applying geophysical inversion processes to the ultra-deep resistivity data generates models that enhance the reservoir interpretation. Formation boundary identification and definition of thin layers in the vertical plane can be achieved with 1D EM inversion. Combining these results with a Gauss-Newton-based 3D inversion provides better identification of the reservoir lateral variability. Recently the introduction of inverting the 3D EM inversion for anisotropy as well as resistivity, permits the identification of isotropic and anisotropic intervals allowing lithological and fluid identification at greater distances from the borehole. The geological models derived from the inversion data can provide a good representation of the subsurface but are more useful for decision making when correlated with other LWD data and azimuthal images, for example density and gamma ray. These tools have a much shallower range of detection but provide more detail which can be critical when placed in its geological context. Combining all available technologies to improve reservoir understanding of different depositional environments is a more effective approach. Interpretation of the 1D, 3D and 3D anisotropy inversions both allows identification of complex oil water contacts which is vital for hydrocarbon reserves calculation and in certain environments, identification of intra-reservoir thin shale layers that can act as a baffle of fluid movement. Refining these models with the information available from density/neutron, gamma and deep EM data provides a greater level of detail which can also play an important role in the completion design process. The improved reservoir understanding derived when combining the interpretation of these diverse methodologies can provide a better understanding of the geological scenarios and allows the identification of elements that play a role in well and field production. Identifying these trends during the drilling operations allows for both optimization of the well placement and completion installation. Further analysis post well allows improved reservoir exploitation and planning of new wells.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3