A Numerical Model for Simulating Pressure Response of Well Interference and Well Performance in Tight Oil Reservoirs With Complex–Fracture Geometries Using the Fast Embedded–Discrete–Fracture–Model Method

Author:

Yu Wei1,Xu Yifei2,Weijermars Ruud1,Wu Kan1,Sepehrnoori Kamy2

Affiliation:

1. Texas A&M University

2. University of Texas at Austin

Abstract

Summary The effect of well interference through fracture hits in shale reservoirs needs to be investigated because hydraulic fracturing is abundantly used in the development of unconventional oil and gas resources. Although numerous pressure tests have proved the existence of well interference, relatively few physical models exist to quantitatively simulate the pressure response of well interference. The objective of the present study is to develop a numerical compositional model in combination with a fast embedded-discrete-fracture-model (EDFM) method to simulate well interference. Through nonneighboring connections (NNCs), the fast EDFM method can easily and properly handle complex-fracture geometries, such as nonplanar hydraulic fractures and a large amount of natural fractures. Using public data for Eagle Ford tight oil, we build a reservoir model including up to three horizontal wells and five fluid pseudocomponents. The simulation results show that the connecting hydraulic fractures play a more-important role than natural fractures in declining bottomhole pressure (BHP) of the shut-in well. Matrix permeability has a relatively minor effect on pressure drawdown, and well productivity remains only slightly affected by the overall low permeability used. The BHP pressure-decline profiles change from convex to concave when the conductivity of the connecting fractures increases. At early times, the BHP of the shut-in well decreases when the number of natural fractures increases. At later times, the natural-fracture density has a lesser effect on the pressure response and no clear trend. The opening order of neighboring wells affects the well-interference intensity between the target shut-in well and the surrounding wells. After a systematic investigation of pressure drawdown in the reservoir, we formulate practical conclusions for improved production performance.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3