Rheology of a New Sulfonic Associative Polymer in Porous Media

Author:

Seright R.S.. S.1,Fan Tianguang1,Wavrik Kathryn1,Wan Hao1,Gaillard Nicolas2,Favéro Cédrick2

Affiliation:

1. New Mexico Tech

2. SNF Floerger

Abstract

Summary For hydrophobically associative polymers, incorporating a small fraction of hydrophobic monomer into a hydrolyzed polyacrylamide (HPAM) polymer can promote intermolecular associations and thereby enhance viscosities and resistance factors. In this paper, we investigate the behavior of a new associative polymer in porous media. The tetra-polymer has low hydrophobic-monomer content and a molecular weight (Mw) of 12–17 million g/mol. Total anionic content is 15–25 mol%, including a few percent of a sulfonic monomer. This polymer is compared with a conventional HPAM with 18–20 million g/mol Mw and 35–40% anionic content. Rheological properties (viscosity vs. concentration; and shear rate and elastic and loss moduli vs. frequency) were similar for the two polymers [in a 2.52% total dissolved solids (TDS) brine at 25 °C]. For both polymers in cores with permeabilities from 300 to 13,000 md, no face plugging or internal-filter-cake formation was observed, and resistance factors correlated well using the capillary-bundle parameter. For the HPAM polymer in these cores, low-flux resistance factors were consistent with low-shear-rate viscosities. In contrast, over the same permeability range, the associative polymer provided low-flux resistance factors that were two to three times the values expected from viscosities. Moderate shear degradation did not eliminate this effect—nor did flow through a few feet of porous rock. Propagation experiments in long cores (up to 157 cm) suggest that the unexpectedly high resistance factors could propagate deep into a reservoir—thereby providing enhanced displacement compared with conventional HPAM polymers. Compared with HPAM, the new polymer shows a significantly higher level of shear thinning at low fluxes and a lower degree of shear thickening at high fluxes.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3