Accuracy and Precision of Reservoir Fluid Characterization Tests Through Blind Round-Robin Testing

Author:

Mawlod Arwa1,Memon Afzal2,Nighswander John2

Affiliation:

1. ADNOC Onshore

2. FluidsData

Abstract

Abstract Objectives/Scope: Oil and gas operators use a variety of reservoir engineering workflows in addition to the reservoir, production, and surface facility simulation tools to quantify reserves and complete field development planning activities. Reservoir fluid property data and models are fundamental input to all these workflows. Thus, it is important to understand the propagation of uncertainty in these various workflows arising from laboratory fluid property measured data and corresponding model uncertainty. The first step in understanding the impact of laboratory data uncertainty was to measure it, and as result, ADNOC Onshore undertook a detailed study to assess the performance of four selected reservoir fluid laboratories. The selected laboratories were evaluated using a blind round-robin study on stock tank liquid density and molar mass measurements, reservoir fluid flashed gas and flashed liquid C30+ reservoir composition gas chromatography measurements, and Constant Mass Expansion (CME) Pressure-Volume-Temperature (PVT) measurements using a variety of selected reservoir and pure components test fluids. Upon completion of the analytical study and establishing a range of measurement uncertainty, a sensitivity analysis study was completed using an equation of state (EoS) model to study the impact of reservoir fluid composition and molecular weight measurement uncertainty on EoS model predictions. Methods, Procedures, Process: A blind round test was designed and administered to assess the performance of the four laboratories. Strict confidentiality was maintained to conceal the identity of samples through blind test protocols. The round-robin tests were also witnessed by the researchers. The EoS sensitivity study was completed using the Peng Robinson EoS and a commercially available software package. Results, Observations, Conclusions: The results of the fully blind reservoir fluid laboratory tests along with the statistical analysis of uncertainties will be presented in this paper. One of the laboratories had a systemic deviation in the measured plus fraction composition on black oil reference standard samples. The plus fraction concentration is typically the largest weight percent component in black oil systems and, along with the plus fraction molar mass, plays a crucial role in establishing the mole percent overall reservoir fluid compositions. Another laboratory had systemic issues related to chromatogram component integration errors that resulted in inconsistent carbon number concentration trends for various components. All laboratories failed to produce consistent molecular weight measurements for the reference samples. Finally, one laboratory had a relative deviation for P-V measurements that were significantly outside the acceptable range. The EoS sensitivity study demonstrates that the fluid composition and stock tank oil molar mass measurements have a significant impact on EoS model predictions and hence the reservoir/production models input when all other parameters are fixed. Novel/Additive Information: To the best of our knowledge, this is the first time such an extensive and fully blind round-robin test of commercial reservoir fluid characterization laboratories has been completed and published in the open literature. The industry should greatly benefit from this first-of-its-kind blind round-robin dataset being made available to all. The study provides the basis, protocols, expectations, and recommendations for such independent round-robin testing for fluid characterization laboratories on a broader scale.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3