Theoretical and Experimental Bases for the Dual-Water Model for Interpretation of Shaly Sands

Author:

Clavier C.1,Coates G.2,Dumanoir J.2

Affiliation:

1. Schlumberger Technical Services

2. Schlumberger Well Services

Abstract

Abstract A simple petrophysical model proposed by Waxman and Smits (WS)1 in 1968 and Waxman and Thomas (WT)2 in 1972 accounts for the results of an extensive experimental study on the effects of clays on the resistivity of shaly sands. This model has been well accepted by the industry despite a few inconsistencies with experimental results. It is proposed that these inconsistencies resulted from the unaccounted presence of salt-free water at the clay/water interface. Electrochemistry indicates that this water should exist, but is there enough to influence the results? Both a theoretical study and reinterpretation of Waxman-Smits-Thomas data show that there is. The corresponding new model starts from the Waxman and Smits concept of supplementing the water conductivity with a conductivity from the clay counterions. The crucial step, however, is equating each of these conductivity terms to a particular type of water, each occupying a representative volume of the total porosity. This approach has been named the "dual-water" (DW) model because of these two water types - the conductivity and volume fraction of each being predicted by the model. The DW model has been tested on most of the core data reported in Refs. 1 and 2. The DW concept is also supported by log data3 and has been successfully applied to the interpretation of thousands of wells. However, the scope of this paper remains limited to the theoretical and experimental bases of the DW model. The Petrophysical DW Model The purpose of this model is to account for the resistivity behavior of clayey sands. For petrophysical considerations, a clayey formation is characterized by its total porosity, ft; its formation factor, F0; its water saturation, SwT; its bulk conductivity, Ct; and its concentration per unit PV of clay counterions, Qv. The formation behaves like a clean formation with identical parameters ft, F0, and Swt but containing a water whose conductivity, Cwe, differs from the bulk formation water. Neither the type of clays nor their distribution influences the results. Since the formation obeys Archie's laws,Equation 1 The clayey sand equivalent water conductivity, Cwe, can be considered a mixture of two waters. 1. A clay water surrounds the clay particles but has a conductivity independent of the type and amount of clay. Its conductivity, Ccw, comes exclusively from the clay counterions. The volume fraction of clay water, Vcw, is directly proportional to the counterion concentration, QvEquation 2 where vQ is the amount of clay water associated with 1 unit (meq) of clay counterions. 2. The water further away from the clay is called far water. Its conductivity, Cw, and ionic concentration correspond to the salinity of bulk-formation water. The volume fraction of this water, Vfw, is the balance between the total water content and the clay water.Equation 3 The implicit assumption is that the far water is displaced preferentially by hydrocarbons.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3