Rheological Properties of Methane Hydrate Slurry in the Presence of Xanthan Gum

Author:

Fu Weiqi1,Wang Zhiyuan1,Sun Baojiang1,Xu Jianchun1,Chen Litao1,Wang Xuerui1

Affiliation:

1. China University of Petroleum (East China)

Abstract

Summary Methane hydrate formation in a xanthan-gum (XG) solution is an important problem for drilling in a deepwater environment. It not only alters the rheology of the drilling fluid in the wellbore but increases the risks of a hydrate blockage in the blowout preventer. The current work is performing groups of experiments to investigate the rheology of the hydrate slurry under XG concentrations of 0.15, 0.2, 0.25, and 0.3%, shear rates from 10 to 480 s−1, and hydrate concentrations from 1.01 to 9.12%. The experimental results show that the hydrate slurry with XG additives exhibits an obvious shear-thinning behavior, which is because the XG solution has strong pseudoplastic characteristics, and the inner structures of the flocculated hydrate particles suspended in the hydrate slurry are broken up during the hydrate-slurry flow. The increase of hydrate concentrations in the hydrate slurry can reduce the non-Newtonian fluid index and make the rheology of the hydrate slurry become more shear-thinning. However, as the XG concentration increases in the hydrate slurry, the influence of the hydrate concentration on the rheology of the hydrate slurry gradually weakens. Empirical Herschel–Bulkley-type equations are developed to describe the rheology of the hydrate slurry with XG for the current experimental condition, considering the shear rate, hydrate concentration, and XG concentration. In the proposed equations, the non-Newtonian factor and the consistency factor are expressed as functions of XG concentration empirically. Correction Notice:The preprint version of this paper was modified from its original version to correct Figs. 8 and 9 and Eqs. 6 through 9 on page 7. Errata explaining the corrections are included below as Supporting Information.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3