Oil and Gas Relative Permeability as a Function of Fluid Composition

Author:

Churchwell Lauren1,DiCarlo David2

Affiliation:

1. The University of Texas at Austin, Now with Chevron Technology Center, a Division of Chevron USA, Inc.

2. The University of Texas at Austin

Abstract

Abstract During miscible gas injection for enhanced oil recovery, the composition of the fluids can change throughout the reservoir as the oil and gas phases develop miscibility. Measuring and modeling relative permeability as compositional regions are traversed creates many challenges. In simulators, the association of each phase with a relative permeability curve sometimes creates discontinuities when phases disappear across miscibility boundaries. Some newer relative permeability models attempt to resolve these issues by changing the standard "oil" and "gas" method of phase labeling and instead labeling phases according to a physical property that is continuous and tied to composition, most notably the fluid density or Gibbs free energy (GFE). Ideally, a relative permeability model will be based on experimental measurements. A handful of all relative permeability experiments focus on studying changes in relative permeability brought about by changes in fluid composition with increasing capillary number. However, there is also evidence to suggest that composition can impact relative permeability even at capillary numbers well below the capillary desaturation threshold. In this research, two-phase gas/oil core flood experiments were performed with ethane as the gas phase and equilibrated octane as the oil phase. Pressure was varied so that the composition (density and GFE) of the gas and oil were changing. The capillary numbers were kept low and constant to prevent capillary desaturation of the oil phase. The experiments were then repeated with an added residual brine phase to test the effect of composition with a third phase present. The results show that changing the density and GFE of the oil and gas phases in either two-phase or three-phase flow had no impact on the relative permeability curves. However, significant changes were observed when comparing two-phase to three-phase oil and gas relative permeabilities. When only gas and oil were flowing in the core, the oil phase formed a continuous layer on the pore surfaces. The addition of residual brine caused the oil to form droplets, reducing the relative permeability of both the oil and gas phases in the absence of a continuous layer of oil. These findings verify previous history-matched relative permeabilities in literature and show that the oil phase connectivity is more important than compositional parameters.

Publisher

SPE

Reference27 articles.

1. Influence of Interfacial Tension on Gas/Oil Relative Permeability in a Gas-Condensate System;Asar;SPE Reservoir Engineering,1988

2. Baker, L. E. (1988). Three-Phase Relative Permeability Correlations. In SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers. https://doi.org/10.2118/17369-MS.

3. Influence of Very Low Interfacial Tensions on Relative Permeability;Bardon;Society of Petroleum Engineers Journal,1980

4. Novel Three-Phase Compositional Relative Permeability and Three-Phase Hysteresis Models;Beygi;Society of Petroleum Engineers Journal,2015

5. An Empirical Model for Three-Phase Relative Permeability;Blunt;Society of Petroleum Engineers Journal,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3