Efficient Drilling Sequence Optimization Using Heuristic Priority Functions (includes associated errata)

Author:

Wang Z.1,He J.1,Tanaka S.1,Wen X.-H.1

Affiliation:

1. Chevron Technical Center (CTC)

Abstract

Summary Drilling sequence optimization is a common challenge faced in the oil and gas industry, and yet it cannot be solved efficiently by existing optimization methods due to its unique features and constraints. For many fields, the drilling queue is currently designed manually based on engineering heuristics. In this paper, we combined the heuristic priority functions (HPFs) with traditional optimizers to boost the optimization efficiency at a lower computational cost to speed up the decision-making process. The HPFs are constructed to map the individual well properties such as well index and interwell distance to the well priority values. As the name indicates, wells with higher priority values will be drilled earlier in the queue. The HPFs are a comprehensive metric of interwell communication and displacement efficiency. For example, injectors with fast support to producers, or producers with a better chance to drain the unswept region, tend to have high scores. They contain components that weigh the different properties of a well. These components are then optimized during the optimization process to generate the beneficial drilling sequences. Embedded with reservoir engineering heuristics, the priority function (PF) helps the optimizer focus on exploring scenarios with promising outcomes. The proposed HPFs, combined with the genetic algorithm (GA), have been tested through drilling sequence optimization problems for the Brugge Field and Olympus Field. Optimizations that are directly performed on the drilling sequence are used as reference cases. Different continuous/categorical parameterization schemes and various forms of HPFs are also investigated. Our exploration reveals that the HPF including well type, constraints, well index, distance to existing wells, and adjacent oil in place (OIP) yields the best outcome. The proposed approach achieved a better optimization starting point (∼5 to 18% improvement due to more reasonable drilling sequence rather than random guess), a faster convergence rate (results stabilized at 12 vs. 30 iterations), and a lower computational cost [150 to 250 vs. 1,300 runs to achieve the same net present value (NPV)] over the reference methods. Similar performance improvement was also observed in another application to a North Sea–type reservoir. This demonstrated the general applicability of the proposed method. The use of HPFs improves the efficiency and reliability of drilling sequence optimization compared with the traditional methods that directly optimize the sequence. They can be easily embedded in either commercial or research simulators as an independent module. In addition, they are also an automatic process that fits well with iterative optimization algorithms.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3