High Strength, Ultralightweight Proppant Lends New Dimensions to Hydraulic Fracturing Applications

Author:

Rickards Allan R.1,Brannon Harold D.1,Wood William D.1,Stephenson Christopher J.1

Affiliation:

1. BJ Services Co.

Abstract

Summary Since the earliest fracturing treatments more than 50 years ago, many different materials have been used including sand, glass beads, walnut hulls, and metal shot. Today's commonly used proppants include various sands, resin-coated sands, intermediate-strength ceramics, and sintered bauxite—each employed for its ability to cost-effectively withstand the respective reservoir closure stress environment. As the relative strength of the various materials increases, so too have the respective particle densities, ranging from 2.65 g/cm3 for sands to 3.4 g/cm3 for the sintered bauxite. Unfortunately, increasing particle density leads directly to an increasing degree of difficulty with proppant transport and a reduced propped-fracture volume for equal amounts of the respective proppant, thereby reducing fracture conductivity. Intuitively, one expects that a lesser-density proppant would be easier to transport, allowing for reduced demands on the fracturing fluids, and if it had sufficient strength, would provide increased width, and hence, enhanced fracture conductivity. Previous efforts undertaken to employ lower-density materials as proppant have generally resulted in failure because of insufficient strength to maintain fracture conductivity at even the lowest of closure stresses (1,000 psi). Recent research on material properties has at last led to the development of an ultralightweight (ULW) material with particle strength more than sufficient for most hydraulic fracturing applications. The current ULW proppants have apparent specific gravities of 1.25 and 1.75 g/cm3. Laboratory tests will demonstrate exceptional fracture conductivity at stresses to 8,000 psi. This paper presents data illustrating the performance of the new ULW proppant over a broad range of conditions and a discussion of relative performance in field applications.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3