Artificial Intelligence Comes of Age in Oil and Gas

Author:

Braswell Gentry1

Affiliation:

1. JPT Online Technology Editor

Abstract

Artificial Intelligence Once the stuff of science fiction, artificial intelligence (AI) has become ubiquitous in our daily life, and the modern oil and gas industry is no exception. Artificial neural networks, fuzzy logic, and evolutionary algorithms are common among AI techniques being applied today in oil and gas reservoir simulation, production and drilling optimization, drilling automation and process control, and data mining. “Today, when you talk to information technology (IT) people, they mention four trends: social media, mobile devices, the cloud, and big data,” said Reid Smith, manager of IT Upstream Services at Marathon Oil, and a fellow of the Association for the Advancement of Artificial Intelligence. Social media are in everyday use for collaboration; mobile devices are proving valuable in field operations; cloud computing has the potential to deliver cost savings and increased flexibility and performance in networking and data management; and hyperdimensional, complex, big data are well suited for analysis by machine learning, which is a key element of today’s applications of AI. In addition to a large existing volume of historical oil and gas data, today’s increasingly complex upstream environments generate vast amounts of data for which the value is greatly enhanced with cutting-edge IT. “Some argue there is a substantial amount of oil to be found by applying new analysis techniques to data already on the shelf,” Smith said. It is important to distinguish between data management and AI. SPE’s Artificial Intelligence and Predictive Analytics (AIPA) group was previously a subsection of SPE’s Digital Energy Technical Section. Now it constitutes its own technical section, Petroleum Data Driven Analytics. Essentially, digital energy is the curating—gathering, storage, and generation—of data, whereas AIPA involves using the data to perform tasks without human intervention, said Shahab D. Mohaghegh, professor of petroleum and natural gas engineering at West Virginia University, and founder of oil-field consulting and software company Intelligent Solutions, Inc. (ISI). “There is a push in our industry toward smart fields,” Mohaghegh said. “There is a misconception in our industry today that equates automation with intelligence. Just because an operation is automated does not mean that it is smart. Without AI, you may have auto-mated fields, but you will not have smart fields. An automated field may provide the brain, but AI provides the mind. AI is the language of intelligence; it is what makes the hardware smart. To fully realize this, one must subscribe to a complete paradigm shift.” A good modern example of the data-driven model outside the industry is credit card fraud detection and prevention tools that monitor consumer purchasing habits. “At ISI, that’s how we build reservoir management tools today,” Mohaghegh said. “We are now using the pattern recognition power of this technology to predict, manage, and design hydraulic fracture details in shale, using the hard data rather than soft data.”

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3