Laboratory Results of Proppant Transport in Complex Fracture Systems

Author:

Sahai Rakshit (Raki)1,Miskimins Jennifer L.1,Olson Karen E.2

Affiliation:

1. Colorado School of Mines

2. Southwestern Energy

Abstract

Abstract With a global paradigm shift towards exploring shale reservoirs, the industry focus has moved towards optimizing hydraulic fracturing in these reservoir types. Low-viscosity slickwater fracture treatments are commonly used as a completion technique in these ultra-low permeability reservoirs. Each shale reservoir is different due to the presence of in situ natural fractures and other geologic complexities, and thus the resultant hydraulic fracture network is distinct and the proppant transport in these "created" complex fracture networks is not clearly understood. Much speculation exists in the industry as to how efficiently the proppant is transported from the primary fracture into subsidiary fractures, if it is at all. A better awareness of proppant movement in complex fracture networks can possibly help with better hydraulic fracture treatment designs by focusing on parameters that enhance transport in the subsidiary fractures and understanding what impacts this transport may have on the resulting production. This paper discusses a series of tests carried out in a low-pressure laboratory setting to evaluate proppant transport in complex fracture networks. Different slickwater treatment scenarios were simulated by pumping sand slurry through a series of complex slot configurations while varying the slot complexity, pump rate, proppant concentration, and proppant size. Results from twenty-seven tests carried out provide some interesting insights into the nature of proppant transport and settling in complex fracture networks. In the case of a primary slot system, the proppant transport was observed to occur via traction carpet after the creation of a proppant dune. However, in the case of secondary slots, the proppant transport was found to be dependent on the dune buildup in the primary slot. Two mechanisms were observed to be transporting the proppant into the secondary slots: 1) proppant flowing around the corner at pump rates higher than the threshold pump rate (related to the threshold velocity in the primary slot), and 2) proppant falling from the primary slot due to the effects of gravity, regardless of the pump rate.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3