Enabling Hydrogen Production from Shale Oil Reservoirs: An Experimental Study Using Microwave-Assisted Catalytic Heating

Author:

Yan K.1,An B.1,Yuan Q.1

Affiliation:

1. Bob L. Herd Department of Petroleum Engineering, Texas Tech University, Lubbock, Texas, U.S.

Abstract

Abstract Transforming hydrocarbon resources to a clean, low-cost hydrogen (H2) supplier is a promising, albeit technically difficult, pathway towards decarbonizing fossil fuels by petroleum industry. A novel approach recently proposed is the microwave/electromagnetic-assisted catalytic heating technology for in-situ hydrogen generation and extraction directly from petroleum reservoirs. Here we further evaluate the potential of shale oil for H2 generation in the presence of shale rocks under microwave irradiation. A series of lab-scale experiments are conducted for shale oil conversion to hydrogen in Mancos shale rock samples without artificial catalysts. The real-time variations of measured temperature of rock samples, gas flow rate, and concentration of hydrogen and other generated gases are monitored. We find that the pure shale rocks can be heated up to over 600 °C without any promoter at an input power of 1.5 kW during microwave heating. A sudden increase of measured temperature of the Mancos shale is monitored at a temperature below 300 °C during microwave irradiation, referred to as "temperature soaring" (TS) phenomenon. Once TS phenomenon happens, the shale rock can be easily heated at a much lower microwave power. Furthermore, minerals in shale rocks have a significant natural catalytic effect on shale oil conversion to H2. A concentration of 1% hydrogen starts to be monitored in generated gases from shale oil at a measured temperature of 253-421 °C in the presence of Mancos rocks, much lower than the sample with 100% quartz at 523 °C. The highest H2 production rate and H2 concentration are 178 sccm and 77 mol.% from the conversion of 0.4 g shale oil, respectively. Additionally, long-range well-ordered carbon is commonly found in the shale rocks after microwave heating experiments.

Publisher

SPE

Reference24 articles.

1. An Experimental Study of the Possibility of in Situ Hydrogen Generation within Gas Reservoirs;Afanasev;Energies,2021

2. Thermodynamics of Phase Transitions in Minerals: A Macroscopic Approach;Carpenter;The Stability of Minerals,1992

3. Kinetic Study of the Thermal Decomposition of Polypropylene, oil Shale, and Their Mixture;Gersten;Fuel,2000

4. Experimental Study of a Novel In Situ Gasification Technique for Improved Oil Recovery From Light Oil Reservoirs;Greaves;Journal of Canadian Petroleum Technology,2006

5. The Oil and Gas Industry in Energy Transitions;International Energy Agency,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3