Author:
Akowuah Joseph Oppong,Bart-Plange Ato,Dzisi Komla Agbeko
Abstract
Performance of a tractor mounted solar-biomass hybrid dryer which utilise combined energy of solar and biomass was investigated. Drying behaviour of maize grains in the dryer was also investigated using 10 thin-layer mathematical models. The models were compared based on coefficient of determination (R<sup>2</sup>) and root mean square error (RMSE) values between experimental and predicted moisture ratios. Moisture content (MC) of grains in the dryer reduced from 19 ± 0.86% to 13 ± 0.4% (w.b.) in 5 h, compared to grains dried in open-sun which reached same MC in 15 hours. This resulted in average drying rate of 1.2 %·h<sup>–1</sup> compared to 0.4 %·h<sup>–1</sup> for grains dried in the open-sun leading to net savings in drying time of 67%. Overall mean temperature, 41.93 ± 2.7 °C in the dryer was 15.3 °C higher than the ambient temperature. Midilli Kucuk model was best to describe the thin-layer drying kinetics of maize in the dryer. It showed a good fit between the predicted and experimental data. The effective moisture diffusivity of grains dried in the dryer ranged between 1.45 × 10<sup>–11</sup> m<sup>2</sup>·s<sup>–1</sup> – 3.10 × 10<sup>–11</sup> m<sup>2</sup>·s<sup>–1</sup>. An activation energy of 96.83 kJ·mol<sup>–1</sup> was determined based on the Arrhenius-type equation.
Publisher
Czech Academy of Agricultural Sciences
Subject
Agronomy and Crop Science,Animal Science and Zoology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献