Variation in the spatio-temporal expression of insecticidal genes in cotton

Author:

Bakhsh A.,Shahzad K.,Husnain T.

Abstract

The most significant breakthrough in plant biotechnology is the development of the techniques to transform genes from unrelated sources into commercially important crop plants to develop resistance against targeted insect pests. The spatio-temporal expression of insecticidal genes in transgenic cotton varies with plant age, plant parts and environmental conditions. The understanding of this temporal and spatial variation in efficacy and the resulting mechanisms is essential for cotton protection and production. This review summarizes variations in the efficacy of introduced insecticidal genes in cotton crop. The factors contributing to the variability of endotoxins have also been highlighted. The reduction in Bt protein biosynthesis in late-season cotton tissues could be attributed to the overexpression of the Bt gene at earlier stages, which leads to gene regulation at post-transcription levels and consequently results in gene silencing at a later stage. Methylation of the promoter may also play a role in the declined expression of endotoxin proteins. In genetically modified crops several environmental factors have been reported to affect the expression of transgenes. Among environmental factors nitrogen metabolism, inhibition of synthesis, degradation, remobilization and high temperature are attributable to the quantitative reduction in Bt proteins. Applying plant growth regulators or protein enhancers such as Chaperone<sup>TM</sup> may improve Bt cotton efficacy through enhancing the synthesis of proteins. Also some agronomic practices such as nitrogen fertilization and timely irrigation favour the endotoxin expression. Thus, variations in the efficacy of insecticidal genes in transgenic cotton and the involved mechanisms need to be understood fully so as to plan rational resistance management strategies to retard the rate of resistance development and to control target pests effectively by enhancing the endotoxin expression through genetic or agronomic management.

Publisher

Czech Academy of Agricultural Sciences

Subject

Plant Science,Genetics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3