The development of lucerne root morphology traits under high initial stand density within a seven year period

Author:

Hakl J.,Fuksa P.,Šantrůček J.,Mášková K.

Abstract

The root system of plants is generally regarded as a factor, which is in relation to important agronomic and ecological characteristics. The aim of this study was to investigate the effect of high initial stand density on the reduction in development of lucerne root morphology traits and how long-term this effect would be. In spring 2003, a field experiment with six lucerne entries in randomized blocks was established. Broadcast sowing was used and the seeding rate was 5000 germinated seeds per m2. In 2003–2009, the plants were sampled in each plot in autumn; the average depth of sampling was 0.2 m. The stand density reached an average value of 860 plants per m2 in the autumn of the seeding year and this strongly reduced the root weight, tap-root diameter, position and number of lateral roots. The subsequent decrease of stand density to 57 plants/m2 in 2009 was not linear but it was extremely quick from the 1st to 2nd year and, by contrast, it was extremely slow in the last three years. It indicates that older plants with larger tap-root diameter probably have a higher persistency. All evaluated root traits were developed slowly, nevertheless, they reached common values during a seven year period. The intensity of the relation of stand density to root weight or tap-root diameter increased over time whilst it decreased to the ratio of root-branched plants. Results suggest that an assessment of density in samples should be recommended for the varieties evaluation in case of irregularly-spaced plants because the differences in root morphology among varieties could be caused by the differences in density among the varieties. It is possible to conclude that lucerne stands under higher initial density provided a strongly reduced speed of root development with an impact on important agronomic traits connected with root morphology.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3