Drought tolerance in Zn-deficient red cabbage (Brassica oleracea L. var. capitata f. rubra) plants

Author:

Hajiboland R.,Amirazad H.

Abstract

Effects of Zn deficiency were studied in red cabbage plants under well-watered or drought conditions. Impairment of growth due to Zn deficiency was higher under drought compared with well-watered conditions. Drought stress caused a drastic decline in Zn content and led to a damage of photosynthetic apparatus in Zn-deficient but not Zn-sufficient leaves. Net assimilation and transpiration rate were strongly reduced under Zn deficiency and drought conditions following reduction of stomatal conductance. Activity of antioxidant enzymes, with the exception of superoxide dismutase, increased under Zn deficiency conditions, while drought enhanced activity of all studied enzymes concomitant with accumulation of malondialdehyde and H<sub>2</sub>O<sub>2</sub>. The intensifying effect of drought on Zn-deficient leaves could be explained by impaired leaf photochemical events, reduction of whole plant photosynthesis and imbalance between production and scavenging of reactive oxygen species. Water use efficiency, water and osmotic potential of drought-stressed plants were higher under low compared with adequate Zn supply, however, these parameters were not critical for plant growth response under combinative effect of drought and Zn deficiency.

Publisher

Czech Academy of Agricultural Sciences

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3