A neural network model for prediction of deoxynivalenol content in wheat grain based on weather data and preceding crop

Author:

Klem K.,Váňová M.,Hajšlová J.,Lancová K.,Sehnalová M.

Abstract

Deoxynivalenol (DON) is the most prevalent Fusarium toxin in Czech wheat samples and therefore forecasting this mycotoxin is a potentially useful tool to prevent it from entering into food chain. The data about DON content in wheat grain, weather conditions during the growing season and cultivation practices from two field experiments conducted in 2002–2005 were used for the development of neural network model designed for DON content prediction. The winning neural network is based on five input variables: a categorial variable – preceding crop, and continuous variables – average April temperature, sum of April precipitation, average temperature 5 days prior to anthesis, sum of precipitation 5 days prior to anthesis. The most important input parameters are the preceding crop and sum of precipitation 5 days prior to anthesis. The weather conditions in April, which are important for inoculum formation on crop debris are also of important contribution to the model. The weather conditions during May and 5 days after anthesis play only an insignificant role for the DON content in grain. The effect of soil cultivation was found inferior for model function as well. The correlation between observed and predicted data using the neural network model reached the coefficient <i>R</i><sup>2</sup> = 0.87.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3