Pollution status of agricultural land in China: impact of land use and geographical position

Author:

Xiaoming Wan,Junxing Yang,Wei Song

Abstract

According to the Soil Pollution Prevention and Control Action Plan released in May 2016, the soil quality of 666 666.7 ha of agricultural soil requires remediation before 2020. Despite the survey on the environmental quality of soil in China released in 2014, detailed data on current pollutant concentrations remain unavailable. To date, reports on soil environmental quality on the national scale are few. The current research aimed to gain a detailed understanding of soil pollution in China through literature study and data analysis. Data for eight potentially toxic elements (i.e., arsenic (As), cadmium (Cd), zinc (Zn), chromium (Cr), mercury (Hg), copper (Cu), nickel (Ni), and lead (Pb)) and two organic pollutants (i.e., hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethanes (DDTs)) were collected from 367 areas involving 163 prefecture-level cities. Principal component analysis and clustering analysis were conducted to understand the relationships among pollutants. Results indicated that organic pollution was less severe than inorganic pollution. In terms of land-use types, garden soil showed the heaviest pollution, followed by arable land and woodland. Regarding geographic distribution, the south central and southwest areas displayed heavy pollution. Principal component and clustering analyses revealed that As, Hg, HCH, and DDTs were mainly contributed by anthropogenic sources; Cr, Cu, Ni, and Zn were primarily caused by natural background; and Cd and Pb were contributed by both sources. The soil pollution status varied among land-use types and geographic areas. The implementation of proper remediation strategies requires detailed investigations on soil environmental quality.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science,Aquatic Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3