Experimental warming reduces fertilizer nitrogen use efficiency in a double rice cropping system

Author:

Yang Taotao,Zeng Yanhua,Sun Yanni,Zhang Jun,Tan Xueming,Zeng Yongjun,Huang Shan,Pan Xiaohua

Abstract

Climate warming significantly affects nitrogen (N) cycling, while its effects on the use efficiency of fertilizer N are still unclear in agroecosystems. In the present study, we examined for the first time the response of fertilizer N use efficiency to experimental warming using <sup>15</sup>N labeling with a free-air temperature increase facility (infrared heaters) in a double rice cropping system. <sup>15</sup>N-urea was applied in micro-plots to trace the uptake and loss of fertilizer N. Results showed that moderate warming (i.e. an increase of 1.4°C and 2.1°C in canopy temperature for early and late rice, respectively) did not significantly affect grain yield and biomass. Warming significantly reduced N uptake from fertilizer for both early and late rice, while increased N uptake from soil. The N recovery rate of fertilizer was reduced from 35.5% in the control and to 32.3% in the warming treatments for early rice and from 47.2% to 43.1% for late rice, respectively. Warming did not affect fertilizer N loss rate in the early rice season, whereas significantly increased it from 38.9% in the control and to 42.7% in the warming treatments in the late rice season, respectively. Therefore, we suggest that climate warming may reduce fertilizer N use efficiency and increase N losses to the environment in the rice paddy.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3