Evaluation of spring barley genotypes with different susceptibility to Fusarium head blight using molecular markers

Author:

Nesvadba Z.,Vyhnánek T.,Ježíšková I.,Tvarůžek L.,Špunarová M.,Špunar J.

Abstract

One of cereal diseases that has gained a greater importance for growers, processing industry as well as for breeders in many regions of the world is Fusarium head blight (FHB) caused by fungi of the Fusarium genus. The objectives of this study were to test diversity among spring barley breeding lines exhibiting various sensitivity to FHB and to find RAPD markers and AFLP markers that will distinguish between susceptible and resistant and/or moderately resistant genotypes. A test of a set of spring barley genotypes artificially infected by fusaria in field trials was carried out. Based on the results from field and laboratory evaluation and deoxynivalenol (DON) content assessment, barley genotypes with different responses to FHB were selected. The genotypes were hybridized and doubled haploid (DH) lines were derived in F<sub>1</sub> generation using the in vitro androgenesis method. Initial parental components and derived DH lines were tested for FHB infection and DON content. A set of parental genotypes of spring barley was tested with 80 RAPD markers. A RAPD marker (H30) was detected which enabled to distinguish between very susceptible parental genotypes and other resistant or moderately resistant spring barley genotypes based on the fragment of about 1300 bp. This specific product was screened in 23 DH lines derived from crosses of parental genotypes of spring barley and detected in 10 DH lines. During the study, some DH lines were selected that exhibited improved resistance to Fusarium infection. A low infection level and low DON content was found in the line DH&nbsp;4/2 derived from CI 4196 &times; Foster. The AFLP technique was used to analyse parental genotypes of spring barley. The detected markers can be further evaluated and employed to select breeding materials.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3