Estimation of genetic parameters of fatty acids composition in flesh of market size common carp (Cyprinus carpio L.) and their relation to performance traits revealed that selective breeding can indirectly affect flesh quality

Author:

Prchal M.,Vandeputte M.,Gela D.,Doležal M.,Buchtová H.,Rodina M.,Flajšhans M.,Kocour M.

Abstract

Fish are a rich source of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and thus, they should be an integral part of human diet at least twice a week. As a result, high attention has been devoted to the improvement of fatty acids (FA) content in the flesh of farmed fish through nutrition. Conversely, there are very few data on the potential of selective breeding to improve FA composition in fish. We estimated genetic parameters of fillet fatty acid content and performance traits in market size common carp cultured under semi-intensive pond conditions. The experimental stock arose through factorial mating of 7 dams and 36 sires. All families were reared communally. Pedigree was reconstructed with microsatellite markers, and 158 individuals were dressed out and selected for flesh FA composition analysis. Heritability estimates of total muscle fat, FA composition in total fat (TF) (n-3 PUFA-TF, PUFA-TF, EPA-TF – eicosapentaenoic acid, n-6/n-3 – omega6/omega3 PUFA ratio), and most performance traits were moderately heritable (h² = 0.23–0.41), and body weight was highly heritable (h<sup>2 </sup>= 0.62 ± 0.20). Genetic correlations show that selection for faster growth would indirectly lead to fillet yield improvement (r<sub>g </sub>= 0.50–0.62) while having little impact on muscle fat (r<sub>g </sub>= 0.21). However, lipid quality in flesh would be affected: n-3 PUFA-TF would decrease and the n-6/n-3 PUFA ratio would increase. A likely interpretation is that faster growing genotypes consume more supplemental feed, which was poor in the beneficial FAs. For sustainable selective breeding, supplemental feed composition should be modified, so that faster growing carps would maintain an appropriate flesh quality.

Publisher

Czech Academy of Agricultural Sciences

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3