Variability in leaf and crown morphology correlated with light availability in five natural populations of Quercus castaneifolia C.A. Mey

Author:

Fariba Babaei,Seyed Gholamali Jalali,Hormoz Sohrabi,Anoshirvan Shirvany

Abstract

In this study, we investigate seedlings of Quercus castaneifolia C.A. Mey, from five different provenances for the research on leaf and crown morphological variations in relation to a light gradient under controlled conditions in a greenhouse. The results show that significant variations occurred in many parameters due to the effects of light availability. The seedling responses to low light include the proportional allocation of more biomass to leaves, leading to higher leaf mass, leaf area, crown area, specific leaf area and leaf area ratio, in contrast, the seedlings grown in high irradiance faced a high temperature resulting in higher transpiration. At this period, seedlings alter their leaf and crown size to prevent overheating. In this experiment, in spite of the same treatments in controlled conditions in a greenhouse, the seedlings from different provenances indicate different responses to light levels. It seems that the seedlings try to maximize their surface area for the intake of light as the most limiting resource in wet provenances. Such responses under the same treatment are adaptive strategies which allow oak seedlings to have the best function under stressed conditions. For Q. castaneifolia as a species with broad fundamental niches in Hyrcanian forests, these variations may be achieved by a combination of genotypic differentiation and phenotypic plasticity.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3