Environmental impact of landfill on groundwater quality and agricultural soils in Nigeria

Author:

Akinbile C.O.

Abstract

Physical, chemical and bacteriological analyses were carried out of water samples from three boreholes located near a landfill, and or soil samples at Akure, Nigeria, to ascertain the effect of the dumpsite on the groundwater and soil quality. The samples from borehole locations with radial distances of 50, 80, and 100 m, respectively, away from the landfill and twelve soil samples collected at distances 0 (dump centre), 10, 20, and 30 m away from the refuse dump were analysed. The parameters determined were the turbidity, temperature, pH, dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), total iron, nitrate, nitrite, chloride, calcium and heavy metals like copper, zinc, and lead. Most of these parameters indicated pollution but were below the World Health Organization (WHO) limits for consumption. The pH ranged from 5.7 to 6.8 indicating toxic pollution, the turbidity values were between 1.6 and 6.6 NTU, and the temperature ranged from 26.5°C to 27.5°C. The concentrations of iron, nitrate, nitrite and calcium ranged from 0.9 to 1.4, 30 to 61, 0.7 to 0.9, and 17 to 122 mg/l, respectively. Out of heavy metals, zinc ranged between 3.3 and 5.4 mg/l and lead ranged from 1.1 to 1.2 mg/l. Soil water holding capacity, porosity, pH, organic matter, organic carbon and organic nitrogen ranged from 38 to 54, 44 to 48, 6.9–7.5, 2.44–4.27, 1.42–2.48, and 0.12–0.21%, respectively. Statistical analyses indicated significant differences at 95% level. The results showed that all the boreholes were not strongly polluted but require treatment before use while the soil is absolutely unsuitable for the crop production. Re-designing of sanitary landfills to prevent leachate from getting to the water table, adoption of clean technology for recycling greenhouse gases and a sustainable land management programme for reclamation are recommended.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3