Effects of cultural cycle and nutrient solution electrical conductivity on plant growth, yield and fruit quality of ‘Friariello’ pepper grown in hydroponics

Author:

Carmine Amalfitano,Laura Del Vacchio,Silvano Somma,Antonio Cuciniello,Gianluca Caruso

Abstract

‘Friariello’ pepper (Capsicum annuum L.) was grown with nutrient film technique (NFT) in order to evaluate the effects of four nutritive solutions, at electrical conductivities (EC) of 3.5, 3.8, 4.1, 4.4 mS/cm, in two cultural cycles (winter-summer versus spring-autumn) on growth, yield and fruit quality. In the winter-summer cycle, fruit yield was significantly higher than in the spring-autumn one. The 3.8 mS/m EC resulted in the highest yield in the winter-summer crops, whereas the 4.1 mS/m EC was the most effective under the spring-autumn cycle. Water consumption was 34% higher in winter-summer than in spring-autumn season. The 3.8 mS/m EC caused the highest water consumption, whereas a 25% reduction was recorded under 4.4 mS/cm. The macronutrients absorption was the highest with 3.8–4.1 mS/cm EC and the lowest with 3.5 mS/cm. Fruits harvested in late summer and berries obtained under 4.4 mS/cm EC mostly showed the best quality. The fruit ascorbic acid and α-carotene content was higher in late summer than in late spring and all fruit antioxidants attained the highest values with 4.4 mS/cm EC.

Publisher

Czech Academy of Agricultural Sciences

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3