Innate defense capability of challenged primary bovine mammary epithelial cells after an induced negative energy balance in vivo

Author:

Danowski K.,Sorg D.,Gross J.,Meyer H.H.D.,Kliem H.

Abstract

Negative energy balance (NEB), if followed by metabolic imbalance, is a common problem in high-yielding dairy cows frequently associated with inflammation of the mammary gland. After entering the teat canal, mammary epithelium is the first line of defense against a pathogen invasion. To investigate the effect of NEB on the innate host defense of the mammary epithelium, primary bovine mammary epithelial cell (pbMEC) cultures were generated by cell extraction of milk derived from energy restricted and control feeding cows. pbMEC were obtained from 8 high-yielding dairy cows affected by induced NEB in mid-lactation due to a reduction to 51 ± 2% of total energy requirement (restriction group) and from 7 control cows (control group). They were exposed to heat-inactivated Escherichia coli and Staphylococcus aureus for 24 and 72 h to investigate the influence of NEB on gene expression profiles of cytokines, chemokines, genes associated with apoptosis and antimicrobial peptides plus their receptors (AMPR) of the innate immune response. The immune challenge of pbMEC demonstrated an effect of immune capacity and NEB in 15 differential expressed genes. NEB induced a substantial up-regulation in restriction compared to control cells by trend in E. coli and a down-regulation in S. aureus exposed cells. Our investigations showed that the dietary-induced NEB in vivo influenced the immune response of pbMEC in vitro and altered the expression of immunological relevant genes due to a difference in energy supply. These results demonstrate that pbMEC are a suitable model for mastitis research, in which even effects of feeding regimes can be displayed.  

Publisher

Czech Academy of Agricultural Sciences

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3