Impact of long and short-term conservation periods on structure of English yew (Taxus baccata L.) in Arasbaran forests, Iran

Author:

Ghanbari Sajad,Sefidi Kiomars,Aghai Matthew

Abstract

Yew (Taxus baccata L.) is one of the most important and threatened tree species in the Arasbaran region of northwestern Iran. To understand the natural stand structure of yew forests to inform forest management, we assessed the structural characteristics and composition of yew communities using the nearest neighbour and full callipering method at three sites with different conservation histories. Within a one-hectare sampling area, tree species identity, diameter, height, and crown diameter were measured. In each of these sampling areas, 56 sample points were surveyed in a 25 m × 25 m grid for tree species identity, diameter, height, and distance from reference to neighbour trees. To quantify the structural characteristics in areas of different conservation status, some indices were calculated including mingling, distance between reference tree and its nearest neighbouring trees, diameter and height differentiation, uniform angle, and Clark-Evans index. Results revealed that four species – hornbeam (68%), maple (8%), yew (7%), and oak (5.2%) – composed 88% of the tree species. The majority of trees had a short distance (2–3 m) between neighbours. The mean diameter differentiation index for long-term and short-term conservation areas was 0.59 and 0.06, respectively. The uniform angle index showed that there was no class value = “1” at all three sites. In the long-term enclosed area, Clark-Evans index was 1.18. In short-term enclosed areas, it was less than 1 (0.82). At all sites, yew trees were in the least vital class. We conclude that enclosing affects the yew stand structure, specifically in long-term periods of enclosure.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science,Forestry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3