Comparative metabolomics and transcriptomics of pistils, stamens and pistilloid stamens widen key knowledge of pistil and stamen development in wheat.

Author:

Yu Yan,Peng Zheng Song,Qu Ji Peng,Chen Zhen Yong,Wei Shu Hong,Liao Ming Li,Zhang Li,Yang Zai Jun

Abstract

To examine the role of metabolites in wheat stamen and pistil development, metabolomic analyses of pistilloid stamens (PS), pistils (P), and stamens (S) from a novel wheat mutant homologous transformation sterility-1 (HTS-1) and controls from their sib-line CSTP were conducted using base gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Then, the metabolomic data were integrated with previously published transcriptomic data and analysed. In total, 141 annotated metabolites were determined from P, PS and S tissues by comparison with reference standards. A total of 90, 93 and 18 different metabolites were identified in S vs. PS, S vs. P and P vs. PS, respectively. Among the different metabolites, 80 may be associated with stamen and pistil growth. Using integration evaluations of both the previous transcriptome data and the 80 various metabolites, we found two perturbed pathways that significantly affect flower development in plants, namely, the phenylpropanoid biosynthesis and cysteine and methionine metabolism. The ethylene synthesis pathway, one key branch of the cysteine and methionine metabolic pathways, could have a pivotal role in pistillody growth involving HTS-1. We found two key enzyme genes in the ethylene synthesis pathway (the SAM synthase gene and the ACC synthase gene) that have higher expression levels in stamens than in pistilloid stamens or pistils. We speculate, that the decrease in ethylene content during stamen development leads to pistillody traits in HTS-1. This study helps elucidate the molecular mechanisms underlying stamen and pistil growth in wheat.

Publisher

Czech Academy of Agricultural Sciences

Subject

Plant Science,Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3