The laboratory calibration of a soil moisture capacitance probe in sandy soils

Author:

Campora Marina,Palla Anna,Gnecco Ilaria,Bovolenta Rossella,Passalacqua Roberto

Abstract

Determining and mitigating landslide risk is a technical-scientific objective, particularly for the protection and proper territorial management and planning. The slope stability depends on the pore pressure distribution, which is influenced by the saturation front propagation through the unsaturated zone, whose monitoring is useful to understand any possible instabilities. Such monitoring may be undertaken by sensors based on the measurement of the relative dielectric permittivity. Reliable relationships between the measurement and the soil moisture are necessary. The main objective of this study is to assess a laboratory calibration protocol for a specific capacitance sensor (Drill &amp; Drop, Sentek Sensor Technologies). Two monogranular sands have been selected for the calibration purpose. The laboratory tests were performed under three relative density values (D<sub>R</sub> equal to 40%, 60% and 80%) for seven volumetric water content values (θ<sub>v</sub> ranging from 0.00% to 36.26%). Based on the experimental measurements, the soil-specific calibration curves were determined at an assigned relative density value; in particular, a simple power law is adopted to describe the probe’s reading as a function of the volumetric water content. The results point out that the relative density values slightly affect the tests, thus, the soil-specific calibration curves are derived based on a simple regression analysis fitting the whole set of the laboratory tests validated for each sand. The calculated coefficient of determination (R<sup>2</sup> = 0.96÷0.99) and root mean square error (RMSE = 1.4%÷2.8%) values confirm the goodness of fit. In order to propose more general fitting curves, suitable for both the investigated sands, multiple linear regressions are performed by considering θ<sub>v</sub> and the mean grain size, D<sub>50</sub> as independent variables; again, the R<sup>2</sup> and RMSE values equal to 0.97 and 2.41%, respectively, confirm the suitability of the calibration curve. Finally, the laboratory calibration curves are compared with the manufacturer-supplied curves, thus, enhancing the need for the soil-specific calibration.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3