Simulation study of anisotropic flow resistance of farmland vegetation

Author:

Zhang S.,Liu Y.,Zhang J.,Liu Y.

Abstract

Farmland vegetation is commonly cultivated with uniform planting spacing and heights. The effect of these features on resistance to hydraulic erosion is unclear. Hydraulic model experiments with the angle between the crop rows and the water flow direction set at 15°, 30°, 45° or 90° were conducted to analyze variation in the law of water flow resistance under partial or complete submergence of the crop. Cultivation can impact the flow resistance on slopes and this effect was greater when the crop was partially submerged. When planting spacing, slope, and water depth were constant, the change of the water flow Darcy-Weisbach resistance coefficient f with crop row-water flow angle was f<sub>15</sub>° &gt; f<sub>30</sub>° &gt; f<sub>45</sub>° &gt; f<sub>90</sub>°. This suggests that flow resistance of farmland vegetation is anisotropic. The water flow resistance coefficient of crops that were partly submerged increased with water depth, but decreased with water depth when the crop was completely submerged. At the critical change from partial submergence to complete submergence, the water flow resistance coefficient was the highest when water depth was equal to crop height. These results may be useful for optimizing farmland planting and soil and water conservation.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3