Modeling of heat and entropy sorption of maize (cv. Sc704): neural network method

Author:

Chayjan R.A.,Esna-Ashari M.

Abstract

Equilibrium moisture content of maize affects its values of dehydration heat and entropy. Precise prediction of heat and entropy with regard to its equilibrium moisture content is a simple and fast method for proper estimation of energy required for dehydration of maize and simulation of dried maize storage. Artificial neural network and thermodynamic equations for computation of maize heat and entropy of sorption were used, as a new method. The artificial neural network method for prediction of the equilibrium moisture content of maize was utilized. The heat of sorption of maize is predicted by a power model. After well training of equilibrium moisture content data sets using the artificial neural network models, predictive power of the model was found to be high (R<sup>2</sup> = 0.99). A power regression model was also developed for entropy of sorption. At moisture content above 11% (d.b.) the heat and entropy of sorption of maize decreased smoothly and they were highest at moisture content about 8% (d.b.).

Publisher

Czech Academy of Agricultural Sciences

Subject

Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3