High soil redox potential contributes to iron deficiency in drip-irrigated rice grown in calcareous Fluvisol

Author:

Zhang Xinjiang,Hou Jianwei,Wang Xiaojuan,Zhang Zhiyang,Dai Fei,Wang Juan,Wei Changzhou

Abstract

Drip-irrigated rice (Oryza sativa L.) is susceptible to iron (Fe) deficiency. The major possible cause of Fe deficiency is the changes in the water regime, which mainly affects the redox potential (E<sub>h</sub>) of the soil dictating the solubility of Fe. However, how high soil E<sub>h</sub> affects soil available Fe and rice Fe uptake is unclear. In this paper, we investigated the effect of soil E<sub>h</sub> on rice Fe uptake under different water management strategies (drip irrigation (DI), flood irrigation (FI) and forced aeration of soil in flooding irrigation (FIO)). The results showed that the diethylenetriaminepentaacetic acid (DTPA)-extractable Fe and Fe<sup>(II)</sup> concentration in the soil, Fe concentration and chlorophyll contents of leaves and biomass of rice in FIO were greater than those in DI but significantly less than those in FI. The Fe uptake of the plant in DI was the lowest, but which in FI was the highest. Overall, FIO resulted in a significant reduction in Fe uptake of rice, but greater than that in DI. We concluded that both the decreased soil water content and the increased soil E<sub>h</sub> were important factors that caused Fe deficiency of drip-irrigated rice.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3