Abstract
O entendimento do tempo e do clima é indispensável para decisões assertivas em diversos campos da atuação humana. Necessitando, portando de dados consistentes e confiáveis para inferências e tomadas de decisão. Deste modo, o objetivo deste trabalho é descrever as funcionalidades de um sistema (web) desenvolvido com intuito de identificar erros e imputar dados ausentes em séries históricas de dados meteorológicos, descrevendo as características e erros da base de dados do INMET (Instituto Nacional de Meteorologia) nos municípios de Matupá MT e Sinop MT. O sistema foi construído com a linguagem de programação Python, as bibliotecas Scikit-learn, SciPy, Pandas, Plotly e o Framework Streamlit. Para validação do sistema foi utilizado série histórica de dados meteorológicos fornecidos pelo INMET, tratados suas falhas e imputados os valores ausentes com o algoritmo KNNImputer. A assertividade da imputação de valores ausentes foi verificada através das métricas de Acurácia, Precisão, Recall, F1-score e Erro Quadrático Médio (QMS). Tais métricas são oriundas de comparação de valores previstos e valores originais por matriz de confusão. O sistema foi eficiente na identificação de outliers e na imputação de valores ausentes, identificando 100% dos valores discrepantes das variáveis analisadas.
Publisher
ABClima (Brazilian Association of Climatology)
Reference20 articles.
1. BABA, Ricardo Kazuo; VAZ, Maria Salete Marcon Gomes; COSTA, Jéssica da. Correção de dados agrometeorológicos utilizando métodos estatísticos. Revista Brasileira de Meteorologia, [S.L.], v. 29, n. 4, p. 515-526, dez. 2014. DOI: http://dx.doi.org/10.1590/0102-778620130611.
2. BIER, Anderson Augusto; FERRAZ, Simone Erotildes Teleginski. Comparação de Metodologias de Preenchimento de Falhas em Dados Meteorológicos para Estações no Sul do Brasil. Revista Brasileira de Meteorologia, v. 32, n. 2, p. 215–226, 2017. DOI 10.1590/0102-77863220008.
3. BILALLI, Besim et al. Intelligent assistance for data pre-processing. Computer Standards & Interfaces, [S.L.], v. 57, p. 101-109, mar. 2018. DOI: http://dx.doi.org/10.1016/j.csi.2017.05.004.
4. BRUBACHER, João Paulo; OLIVEIRA, Guilherme Garcia de; GUASSELLI, Laurindo Antonio. Preenchimento de Falhas em Séries Temporais de Precipitação Diária no Rio Grande do Sul. Revista Brasileira de Meteorologia, [S.L.], v. 35, n. 2, p. 335-344, jun. 2020. DOI: http://dx.doi.org/10.1590/0102-7786352035.
5. CHAFFEY, Dave; WHITE, Gareth. Business Information Management: Improving Performance Using Information Systems. 2. Ed. [s.l.]:Financial Times/Prentice Hall, 2011. ISBN 1784483648, 9781784483647.620 p.